From Quality to Outcomes: Deploying Clinical Analytics

Twitter icon
Facebook icon
LinkedIn icon
e-mail icon
Google icon

Although radiology has employed clinical analytics for more than a decade, the field is in its infancy. Nonetheless, the possibilities are tantalizing—if technological, economic, political, and interoperability hurdles can be cleared. David Ecanow, MD, is the radiology department’s vice chair for quality at NorthShore University HealthSystem (Highland Park, Illinois). He reports that analytics methods are used across the spectrum of his responsibilities: to measure and improve access, utilization, exam quality, safety, interpretive accuracy, outcomes, communication, basic patient care, and regulatory compliance. “By measuring and analyzing the reasons for exams, we attempt to ensure that the correct test is ordered and performed,” he explains. “For example, we tracked the reasons for CT exams ordered with and without contrast, and we were able to decrease unnecessary exams.” To ensure exam quality and safety, Ecanow says, his team has been tracking CT-exam radiation dose by protocol and has used that information to reduce dose across multiple types of exams—particularly in pediatrics, obstetrics, and urology. By tracking peer review of exam interpretations, as well as clinical and pathology outcomes, Ecanow’s team is better able to pinpoint difficult diagnoses and generate inservice education to sharpen accuracy.  “We audit specific critical-exam or critical-result communications to help ensure timely and appropriate communication of results,” he adds. “We audit our mammography services extensively for both exam quality and clinical outcomes.” Improving the Product Woojin Kim, MD, is interim chief of the division of musculoskeletal imaging at the Hospital of the University of Pennsylvania in Philadelphia. He says that clinical analytics helped him increase his section’s study RVUs by 16%, and he also has used analytics to drive quality improvement for reports. “It’s important to remember that reports are a radiologist’s main product,” he emphasizes. “For example, by using analytics tools that can leverage the power of natural language processing, I’ve been able to monitor the laterality errors in radiology reports.” Kim says that his team—after discovering the presence of errors that were being overlooked by coders—has implemented a process for continuous monitoring that allows rapid error correction (using a tool that was developed for the department and subsequently commercialized). “The tool keeps reminding us, if a given report with an error does not get revised,” he explains. “It also keeps track of the time it takes for each report to be corrected. These functions contribute to enforcing and improving compliance.” Within a month of implementing that monitoring process, Kim notes, the error rate dropped by 48% at one of the sites within the system—purely, he insists, because people knew that the process was in place. Analytics can help an organization go beyond the typical measurements to make a meaningful impact on patient care, Kim adds. “The more advanced analytics tools, combined with natural language processing, can mine the radiology reports to detect various quality elements like laterality errors, degree of uncertainty, gender errors, coding errors, and follow-up recommendations,” he says, increasing the referrer’s confidence in the radiologist’s report. “Because many referrers and patients don’t know their radiologists, small errors in reports can have a significant impact on their confidence in their radiologists,” he notes. The Data Path Dan Wassilchalk, executive administrator of the department of radiology at the University of Pittsburgh Medical Center in Pennsylvania, views clinical analytics within the broad sweep of the entire radiology workflow and how it connects with each patient’s data path—from registration to exam acquisition, interactions with other departments, results delivery, and follow-up care. Wassilchalk notes, “Our radiologists will evaluate exams on a peer-review basis and will measure concordance or discordance between interpretations. From a patient-safety perspective, dictations contain key clinical findings that are critical in nature—that need to be reported to the ordering physician in a very timely manner to effectuate clinical intervention. Images, as well as clinical findings, are captured and stored as part of the patient’s electronic record.” Down the line, Wassilchalk says, his department’s goal is to determine whether certain exams for particular diagnoses are useful